
N91-17570 '

Verifying an Interactive Consistency Circuit:

A Case Study in the Reuse of a Verification Technology

Mark Bickford

Mandayam Srivas

Odyssey Research Associates, Inc.
301A Harris B. Dates Drive

Ithaca, NY 14850.

This talk presented the work done at ORA for NASA-LRC in the design
and formal verification of a hardware implementation of a scheme for

attaining interactive consistency (byzantine agreement) among four

microprocessors. The microprocessors used in the design are an

updated version of a formally verified 32-bit, instruction-pipelined,

RISC processor, MiniCayuga. The 4-processor system, which is designed

under the assumption that the clocks of all the processors are

synchronized, provides ''software control'' over the interactive

consistency operation. Interactive consistency computation is

supported as an explicit instruction on each of the microprocessors.

An identical user program executing on each of the processors decides

when and on what data interactive consistency must be performed.

This exercise also served as a case study to investigate the

effectiveness of reusing the technology which had been developed

during the MiniCayuga effort for verifying synchronous hardware

designs. MiniCayuga was verified using the verification system Clio

which was also developed at ORA. To assist in reusing this technology

a computer-aided specification and verification tool was developed.

This tool specializes Clio to synchronous hardware designs and

significantly reduces the tedium involved in verifying such designs.

The talk presented the tool and described how it was used to specify

and verify the interactive consistency circuit.

i

i

Summary

Achievements

1. Formalization of abstract Byzantine agreement algorithm.

2. Use of this algorithm to specify a hardware device.

3. A mechanically checked proof that the device design is correct.

4. The implementation of the device form the low-level design.

l_imitations

I. Assumes synchronized behavior of the processes.

1| A_wt 1990

Verifying an Interactive Consistency

Circuit:

A Case Study in the Reuse of

a Verification Technology

Mark Bickford

Mandayam Srivas

Odyssey Research Associates, Inc.

301A Harris B. Dates Drive

ithaca, NY 14850.

Objectives of the Work

Design an

tion for a

efficient hardware implementa-

4-processor architecture

• Use verified MiniCayuga's in the design

• Verify the design

• Reuse MiniCayuga verification technology

A method of

ware designs

tem

modeling synchronous hard-

in the Clio verification sys-

Formalizing a class of properties most

commonly encountered in verifying de-

signs

-- A "standard" proof strategy

2

Q I____ "Fh__

Presentation Outline

• IC circuit design

The

tool

computer-aided hardware verification

• How we verified it

• General observations about the effort

The Hardware Design: Overview

prvt St

[1131 ID

ICVEC

Cayuga-FTl

prvt St

[ii]I ID

ICVEC

Cayuga-FT4

4

Ici
_O1

_,__.__ N I
NI

El

F, I

II

OI

------_ N 1

S!

prvt St

c--]l ID
ICVEC

Cayuga-FT2

prvt St

ICVEC

Cayuga-FT3

4

Two new instructions:

ICOP KEG

MOVE SREG REG

- initiates and co-orinates

IC computation

- moves special REG to

general KEG

II check if voter is free

Notfree MOVE STATUS KEG1

JIF KEG1Notfree

ICOP KEG2

II check if IC computation is

Notready MOVE STATUS REG1

I I move the

complete

JIF REGI

results

MOVE SREGO

MOVE SREGI

MOVE SREG2

Notready

of IC to

REG3

REG4

REG5

general registers

5

The Hardware Design: Overview

Fault Region 1

Cayuga-FT1 'i _
L12, 3 I ', _-

j,,ffff i _ o
I voterl I, : 5 °

2 EI __ _____
____t-t___..... , T

[
I

ICayuga-FT4 I i

ii ti
Voter4

1

Fault Region 4

Fault Region2

ICayuga-FT2 I

ii t i'

voter2 i]

ICayuga-FT3 i

I,_i_ t _'

,. Voter3 il

Fault Region 3

• voter separate from processor: modularity

• point-to-point connection: electrical iso-

lation

• serialize data transfers: number of pins

Vs. time

• Fault region: processor, voter, and the

connections they feed

no absolute indexing scheme

sors/voters
-relative indexing scheme

s_cc 3

IC vectors will be stored

sors in the order of their

in the proces-

successors

Underlying assumption

chronized with at most

clocks are syn-

a bounded skew

hold sender's signal stable for one

longer than needed

phase

7

[C System Design Behavior

< (_m2

]

• Initiate: draw the attention of voter (1)

• Load: transfer private values (2)

• Exchange: exchange received values (6)

• Compute" compute and store IC vector (3)

8

o

II

t

r

o

,I
II
c

g

MTCI I

Dalapath

w_

f,

('lmt[oilcr .";talc M_hinc

f L

MiniCayuga Processor: Summary

• Inspired by Cayuga (Cornell University)

• 32-bit RISC processor

• Design characteristics

-- 32 general purpose registers

- small and simple instruction set

3-stage instruction

pute, writeback

pipeline: fetch, com-

delayed jump,

forwarding

pipeline stalling, internal

-interrupt

10

What do we prove ?

A£suming

• every Cayuga-FT is about to

ICOP,

execute an

• every Voter is ready to vote, and

• there is at most one faulty region,

then, 12 cycles later the system

isfy the following conditions:

state will sat-

The IC vectors in the processors are iden-

tical "up to rotation."

The]C vectors are correct w.r.t, to the

processor private values 12 cycles earlier.

12

A Computer-Aided Verification Tool

• Specializes Clio to the domain of

state controller systems

finite

• Design specification generation

• Verification condition formulation

• Automatic proof support

13

1
C

O-

n

t 1 S

r

0 fall

-I

I
U

o 'L,/vm

',_la,l_ _

Q_ l The Voter Circuit j

I '__,D,

L

J/,
Conuoilcr State Machine

Finite State Controller Systems (FSCS)

• Central Controller -!- Data Path compo-

nents

• Component behavior is specified as a set

of actions

Controller

schedules

nents.

is specified as an FSM which

a set of actions on the com po-

Timing Model
- Every transition corresponds to a clock

cycle (with multiple phases)

An action may have

(phases) of delay

zero or more units

Actions are synchronized with state tran-

sitions

14

Specification technology reused

@ a method of formalizing the intended op-

erational model of an FSCS in Caliban/Clio

designspecgen ::

data-path-structure ->

controller-structure ->

controller-schedule ->

actions-behavior -> design-spec

Execute :: STATE -> STATE

"single clock cycle behavior of design"

15

Proof technology shared

Form of the most commonly

ditions
- Invariant conditions

proved con-

-- Advance conditions

A_ I_ _ _

• Proof strategy: "=ontrolled

uation (rewriting) with

symbolic eval-

selective case-splits"

16

Tile Specification Hierarchy

b_z_

II,_m_nm_u_nD 4

\

Rationale for the hierarchy

• Decompose proofs into manageable units

• Need for the black level

--introduce "error" actions

type of Execute

of act ion

is different from that

• Implication of intermediate levels

--pro: proof can take "bigger" steps

con: must come up with

abstract specification

intermediate

18

Top Level Specification

I I IcNetState : "~ <<(INDEX -> FTCstate),

II (INDEX -> Voterstate), Interrupts>>

IcNetStep <<ftc,vtr, int:rest>> =

<<newftc,newvtr ,rest>>

where newftc index

= fault_ftc_step index ftc (ftcinput index)

newvtr index

= fault_vtr_step index vtr (vtrinput index)

ftcinput index

= make_ftc_in

vtrinput index

= Voterinput

(select_int index int)

(fault_to_proc index ftc vtr)

index ftc vtr

(ftcinput index)

fault_ftc_step index s in =

FtCayugaStep (s index) in ,

byzCayugaStep (s index) in

"(faulty index)

fault_vtr_step index s =

voterstep (s index)

byzstep (s index)

, - (faulty index)

19

Formal Statement of Correctness

MainTheorem :=

Preconditions 's c => ResultConsistent (s'

ResultConsistent 'sO .'=

Consistent 'icvec s (Iterate #12 IcNetStep s) c

Consistent 'array' "=

'faulty indexC=CFalse ' =>

IndexConsistent 'array c 'index'

IndexConsistent 'array' 'index c "=

('faulty (succ index)'='False'=>

'(array index).succC='array (succ index) C)

& ('faulty (succ2 index)'='FalseC=>

'(array index).succ2C='array (succ2 index) ')

('faulty (succ3 index) C=CFalse'=>

'(array index).succSC='array (succ3 index)')

2O

nditions 's' "=Preco " , ,

Proper_icnet 's' _ Sync 'LDPI' s
All_go's

Sync 'cs' ,<<ftc,vtr,inlist>>' :=

('faulty ONE' = 'False' =>
'control (vtr ONE) '='cs')

a ('faulty TWO' = 'False' =>
Ccontrol (vtr TWO)'='cs')

('faulty THREE' = 'False' =>
'control (vtr THREE) '='cs')

a ('faulty FOUR' = 'False' =>

'control (vtr FOUR) '='cs')

All_go 's' :=

('faulty ONE '='False' =>

('go_of (vtr s ONE) '='False

a ('faulty TWO '='False' =>

('go_of (vtr s TWO) '='False' _
(

('faulty THR EE'='False =>

(ego_of (vtr s THREE) '='False

a ('faulty FOU R'='False' =>

('go_of (vtr s FOUR)''

, & 'go_signal
s ONE '='G

'go_signal s TWO '='G

'go_signal s THREI

'False' _ 'go_signal s FOUR':

21

Preconditions 'sO "=

Proper_icnet 'sO Sync 'LDPI' 'sO All_go 's'

Sync Ccs' '<<ftc,vtr,inlist>>' :=

('faulty 0NE' = 'False c =>

'control (vtr ONE)'=Ccs')

& ('faulty TWO' = 'False' =>

'control (vtr TW0)'='cs')

a ('faulty THREE' = 'False c =>

'control (vtr THKEE)'=Ccs')

& ('faulty FOUR' = 'False' =>

'control (vtr FOUR) C='cs ')

All_go 's' :=

(tfaulty ONEC=CFalse' =>

('go_of (vtr s 0NE) C='False ' & 'go_signal s 0NE'='GO'))

& ('faulty TW0C='False' =>

('go_of (vtr s TW0)'='False' & 'go_signal s TWO'='G0'))

('faulty THREEC=CFalse ' =>

('go_of (vtr s THREE)'=CFalse'

'go_signal s THREE'=' GO'))

& ('faulty FOURC=CFalse' =>

(ego_of (vtr s FOUR) C=CFalse'

& 'go_signal s FOURC=CGO'))

21

The proof strategy

"controlled symbolic

reused

execution of design"

• lnstantiate the states of components and

inputs with appropriate symbolic constants.

o Add all the conditions on the constants

implied by the preconditions of the theo-

rem as hypothesis.

3. Symbolically evaluate design.

m Try case-splitting on all the

automatically.

conditionals

. If either of the previous two steps seem to

take too long, then case-spilt on the con-

troller states and inputs before symbolic

evaluation (step 3).

22

New technology needed

• Modeling faulty behavior

• Specification

- determining the right hierarchy

-- writing intermediate "abstract" spec

-- defining abstraction function (ABS)

Proof: "design

"abstract level

level properness"

properness"

implies

23

General Observations

O An engineering-oriented verification

rience

Lilith _ MiniCayuga -_ IC circuit

expe-

• Methodology: top-down 4- bottom-up

• Level of effort: 1 man year

-- building the tool

-- developing designs

- verification

24

Verification Effort Milestones

• formulated a top level

ment

correctness state-

• designed and verified a simple voter circuit

• specified voter and processor for a contin-

uous voting scheme

• designed and verified second voter design

25

discovered continuous

"hard to synchronize"

voting scheme was

respecified voter and

on-demand scheme

processor for a voting-

• redesign and reverify voter

• verified overall system

• verified processor

26

To integrate theorem proving based verifi-

cation technology into the design process

we need"

-- more machine assistance

-- domain specialization

• The next step ?

A useful way of reporting failed proof

attempts

Interaction

engineering

with motivated and patient

design teams and proJects

27

